Some more embodiment analyses

Here are some more (explorative) analyses from the embodiment data used the Embodiment in character-based video games. I collected also workload data using raw Nasa TLX when gathering data for EFA and CFA, but then I did not use workload data in analyses. My assumption was that workload would correlate with the embodiment, but did not lookContinue reading “Some more embodiment analyses”

Analysis for design

A lecture about who to analyse (board) games using statistics, probability theory and simulations. Link to the slides if Slide Share plugin does not work: http://www.slideshare.net/lankoski/analysis-for-design Scripts used to analyse games and visualise data:  http://www.mediafire.com/download/whucaos4v9chv40/AnalysisForDesignScripts.zip

Modeling Player-character Engagement Poster

The figures from the poster Modeling Player-character Engagement in Single-player Character-Driven Games in ACE Netherlands (2013): (The paper: /2013/11/15/modeling-player-character-engagement-in-single-player-character-driven-games/)

Data and R code of two papers

Below is link to the data file and R code used to in the final models in “Models for Story Consistency and Interestingness in Single-Player RPGs” (in Mindtrek 2013) and “Modeling Player-character engagement in Single-player character-driven games” (in ACE 2013 Netherlands).  The models q4 and q7 are used in the first paper and and the modelContinue reading “Data and R code of two papers”

Model–data comparison

I wrote some code to check my ordinal / clmm models against the data (and to learn to use ggplo2). The function pred() is from clmm tutorial to calculate predictions based on the model. The function plot.probabilities3() is for plotting prediction and distribution form the data. Update: changed extreme subject visualization.  Area seemed not appropriateContinue reading “Model–data comparison”

R / Ordinal Scripts

Update: Added visualizations produced with the scripts Update 2: Updated plot.probabilities() so that response variable can have arbitrary levels I have been using ordinal package to crunch data. Tutorial for mixed models is only for clmm2 and not for clmm. Here are code for visualizing predicted probabilities for clmm. All the code is  based on  clmm2 tutorial.